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The method of lattice statics is used to study the distortion of the LiH crystal with an interstitial He
atom in the body-centered or face-centered position. In these calculations, one needs to know the defect—
host-ion interaction potentials and the dynamical matrix of the undistorted host crystal. The Heitler-London
method is used to estimate the defect-host-ion interaction potentials. The dynamical matrix of the perfect
crystal is calculated on the basis of the deformation dipole model. The formation energies are computed
for the two defect positions and their difference, 0.650 €V, gives the migration energy of an interstitial
He atom in LiH. The calculated migration energy is discussed in light of the high-temperature experimental
result for the activation energy of diffusion of He gas in LiH crystal (1.22 eV).

I. INTRODUCTION

HE method of lattice statics! used in studying the
distortion of crystals containing defects is based
on the discrete lattice theory. In this method the
interactions of the defect with the host ions can be
treated exactly, whereas the potential energy of the
distorted crystal is normally treated in the harmonic
approximation. The total potential energy of the crystal
containing defects is minimized with respect to the
displacements of the host ions. In the resulting equa-
tions, the displacements of the host ions are written in
terms of the normal coordinates. The normal coordi-
nates are determined by the Fourier transforms of the
force constants of the perfect crystal and the forces
between the defect and the host ions. The Fourier
transforms of the force constants of the perfect crystal
are the usual dynamical matrices without the ionic
masses. Thus to solve the lattice statics equations one
needs to know the dynamical matrices of the perfect
crystal and the defect-host-ion interaction potentials.

The dynamical matrix for the LiH crystal in the
deformation dipole approximation has been computed
elsewhere.? Since these calculations are based on the
experimental phonon dispersion curves, they should be
quite good.

The evaluation of the defect-host-ion interaction
potential is the difficult part of the problem. Of the
He-Lit and He-H™ interactions, the latter are stronger
and more difficult to estimate. We reported earlier a
calculation® of the migration energy where we assumed
the He-Li*+ and He-H~ interaction potentials to be of
the Huggins-Mayer form.* Since Li+ and H™ are isoelec-
tronic with He, we computed the parameters in the
potential from a known analytical form of He-He
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potential.’ The ionic radius of He atom was taken to be
the mean of the ionic radii of Lit and H~. The values
used for ionic radius of Lit are due to Huggins® and
Fumi and Tosi” and the corresponding values of H—
ionic radius were calculated in Ref. 4. Both sets of radii
gave about the same value for the migration energy®
(0.7 V).

As to how good this empirical potential is, especially
for He-H™ interactions, it is hard to say. However, the
direct quantum-mechanical calculation of these inter-
actions should be more reliable. Thus, in this paper we
present defect studies based on the quantum-mechanical
estimates of these interactions.

The Heitler-London method is used to calculate the
He-Li* and He-H~ interaction potential energies as
functions of interatomic separations. The formation
energy is calculated when an interstitial He atom is at
the body-centered or face-centered position. The migra-
tion energy of an interstitial He atom in LiH, which is
the difference of the two formation energies, is discussed
in light of the high-temperature experimental value for
the activation energy for diffusion of the He gas in LiH.

II. DEFECT-HOST-ION INTERACTION
POTENTIALS

The main contributions to the atom-ion interaction
potential come from the charge-induced dipole inter-
action, the van der Waals interaction, and the overlap
repulsive interaction. Due to the crystal symmetry, the
electric field at the defect in either of the two con-
figurations considered here is zero, and hence the
charge-induced dipole contribution is zero. Since we
have no accurate estimate of the Van der Waals inter-
action, it is neglected in the present calculations. This
approximation is not expected to be serious since the
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van der Waals interaction, in general, is very weak as
compared with the repulsive overlap interaction for the
atom-ion separations of importance here. (The major
part of the formation energy is determined by the
defect-first-neighbor interactions.) Thus the interaction
potential is due to the repulsive overlap contribution
only.

The He-Li+ and He-H~ repulsive overlap interaction
potentials are calculated quantum mechanically. Each
atom or ion is assumed to be in its ground state with a
closed-shell configuration (both electrons in the same
atomic orbital). Each atomic orbital is approximated by
a Slater-type 1s function

¢ls= (a:}/,’r)l/Ze—ar’

where a is the effective nuclear charge and 7 is the radial
distance from the nucleus expressed in atomic units. («
is determined by minimizing the energy of an atom or an
ion.) The total wave function is a single Slater de-
terminant formed by the atomic spin orbitals of the
interacting atom and ion. The expectation value of the
Hamiltonian for this wave function is given by Slater.?
To get the interaction potential for a given separation,
the expectation value at the infinite atom-ion distance is
subtracted from the expectation value at that separa-
tion. It has been shown' that this procedure gives good
results for the He-He interaction potential for the
interatomic separations of interest here when « is 27/16.
(This value of o minimizes the He atom energy in the
closed-shell configuration.)

In order to get reliable estimates of these interaction
potentials, one needs to know the crystal wave func-
tions for the corresponding atoms or ions. Since the
electrons in Li* ion are relatively tightly bound, we do
not expect their wave functions to change much as we go
from free ion to the crystal. Thus we take o for Li* to be
43/16. Even though electrons in He atoms are some-
what less tightly bound than in Li*, we assume « for He
to be the same as for a free atom, i.e., a(He)=27/16. As
far as an H™ ion is concerned, we know that the closed-
shell configuration does not make a stable free ion. It
has been shown by Chandrasekhar! that the H™ ion has
a very loosely bound outer electron which is further
supported by a very large polarizability? (230 a.u.) of
this ion. However, the polarizability of the H~ ion in
LiH is quite small? as compared to the free-ion value.
Thus the H™ electrons are more confined in the crystal
than in the free ion. Therefore the closed-shell con-
figuration approximation should be”reasonable in the
crystal and the cohesive-energy calculations®® bear this
out. On the basis of very extensive calculations of the

. 97. C. Slater, Quantum Theory of Molecules and Solids (McGraw-
Hill Book Co., New York, 1963), Vol. 1, p. 290.
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cohesive energy, compressibility, and electron density in
LiH, Tseng" concludes that a(H™)=11/16. In these
calculations he finds it necessary to include overlaps up
to seventh neighbor. Thus the H~ ion is still quite
extended, and hence the many-body effects are very
important. This is supported by the violation of the
Cauchy relation in this crystal.’® Since it is extremely
difficult to take many-body effects into account ex-
plicitly in the defect-host-ion interactions, we are
interested in a wave function of H~ which makes the
many-body effects negligible and at the same time gives
a reasonable value for the cohesive energy of the perfect
crystal. The three- and four-body contribution to the
cohesive energy is appreciable and negative while the
two-body overlap contribution is positive when a(H™)
=11/16. However, when o (H™) is increased to one, the
cohesive energy remains about the same while the
many-body contribution becomes negligible. Thus,
«a(H™) equal to 1 gives the H~ wave function required in
the present calculations because it gives an effective
two-body potential which leads to about the same
cohesive energy as that due to the real many-body po-
tential in the crystal. For comparison we also include
here the results based on a(H™) equal to 11/16 (two-
body potential only).

The numerical calculations for the potential energy
curves are carried out by expanding Slater orbitals into
ten Gaussians.!® The results for the He-Li* and He-H~
interaction potentials as functions of interatomic sepa-
rations are plotted in Fig. 1.

III. DEFECT CALCULATIONS AND RESULTS

F’ With the defect as origin of our coordinate system, the
total potential energy of a crystal with a defect can be
written

=2 Y ())+Pot3 X baw ()
123

alk
U’

XU W)U (Fx)F---, (1)

where ¢ (7(lx)) is the interaction potential of the defect
with the «th host ion in the /th unit cell of the crystal,
with 7(lk) being the distance between the defect and the
host ion in its displaced position; the second and third
terms are the first two nonzero terms in the expansion of
the potential energy of the distorted crystal, with
¢ae (I k") being the usual force constants of the per-
fect crystal and U,(lk) being the ath component of the
displacement of ion (/) from its equilibrium position in
the perfect crystal. We treat the distorted crystal po-
tential energy in the harmonic approximation. Using the

4 R. Tseng (private communication).

15 J. L. Verble, J. L. Warren, and J. L. Yarnell, Phys. Rev. 168,
980 (1968).

16 K. O-ohata, H. Taketa, and S. Huzinaga, J. Phys. Soc. Japan
21, 2306 (1966).
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Fic. 1. He-Li* and He-H~ repulsive overlap interaction potentials as functions of interatomic separations.

equilibrium condition

0B/0U o (I) =0,
we get

Fo(lk)=—0y(r(lk))/0U . (i)
= Z ¢aa’ (ZZI;K’C/) Uﬂ' (llK,) ) (2)

a’'l’«’
where I, (lk) is the force on ion (/) due to the defect
when the host ion is in its displaced position. We write

the displacements in terms of normal coordinates as
follows:

1
Ul =— TQu(@eiv 0o, ®

where NV is the number of unit cells in the crystal, ro(l)
is the equilibrium position vector of ion (lk) in the
undistorted crystal, and Q(qx) is the normal coordinate
of ions of type k corresponding to the wave vector q.

Substituting (3) in (2) and with some additional
manipulations, we get

Y Fo(l)eiamto = 5 ¢ (' k)
l

a’l' k!

Xexp{—iq-[ro(k) —1o(V'x") ]} Qu (qr’) . (4)

The nonzero terms in the summation on the left-hand
side of Eq. (4) are due to only those ions which interact
with the defect. This equation can be written

Fa(qK) = ,Z:/ Vaa'(Q»KK/)Qa’(qK/) ) (5)

where V 4o (q,k") is the usual dynamical matrix without
the ionic masses. In matrix form

Fi=VQ1 or Qi=(V9)~F9, (6)

Since F¢is a function of the displacements of the ions
which interact with the defect, substitution of (6) in (3)
gives us a set of coupled equations for these displace-
ments. Knowing the interaction potentials and the
dynamical matrices of the perfect crystal, one can solve
the coupled equations simultaneously for the displace-
ments of these ions.

Now the summation in Eq. (3) extends over the whole
first Brillouin zone whereas one normally calculates the
dynamical matrices only in 1/48th of the zone. However
the vectors Q(qx) in the rest of the zone are related to the
ones in 1/48th of the zone by symmetry operations.
These relations are easily obtained from Eq. (5).

The details of a method to compute the dynamical
matrix on the basis of the deformation dipole model are
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TaBLE I. Displacements of the neighbors® due to a body-centered interstitial He atom in LiH for two values of o (H").
Displacements
(A)
Uy g Us

a(H)= 1 11/16 1 11/16 1 11/16
Positive ions (1,1,1) 0.0519 0.0573 0.0519 0.0573 0.0519 0.0573
,—1,1) 0.0296 0.0416 —0.0219 —0.0271 0.0219 0.0271
(3,1,3) 0.0169 0.0222 0.0029 0.00481 0.0169 0.0222

Negativeions (1,1, —1) 0.157 0.186 0.157 0.186 0.157 0.186
,1,1 0.00175 0.0137 0.00853 0.0109 0.00853 0.0109
3, —1,3) 0.0361 0.0477 —0.00958 —0.0126 0.0361 0.0477

a The position coordinates of the neighbors are in units of half the nearest-neighbor distance in the crystal.

given elsewhere.? We carry out calculations for 8000
points in the first Brillouin zone.

In order to study the migration of an interstitial He
atom in LiH crystal, we need to consider the defect at
the body-centered and face-centered positions of the
smallest cubic cell with four positive and four negative
ions at its corners. We assume that the defect-host-ion
interactions extend up to second neighbor in the body-
centered position and third neighbor in the face-
centered position. This gives us six independent dis-
placement components for the body-centered position
and ten for the face-centered position to be determined
from Egs. (3) and (6) in each case. Using the potential-
energy curves computed in Sec. IT and the dynamical
matrices mentioned above we solve, numerically, the
coupled equations simultaneously for the displacement
components both for the body-centered and the face-
centered positions. Now we can use Eq. (6) to determine
Q(gqx) and then the displacement of any ion in the
crystal from Eq. (3). Displacements of some of the
neighbors of the defect in both the positions are given in
Tables I and II.

The change in energy of the crystal due to the defect,
the formation energy, is given by

E=2yr)]+% 2 Gaa W) U()U o V). (7)
Ik alk
a'l'k’
This can also be written
E;= IZ Yl 1+3 Zl Fo(l)Uq(lk). ®)

Equation (8) is used to calculate the formation energy
of the defect when it is in the body-centered or face-
centered position and the migration energy is just the
difference of the two formation energies. The results are
listed in Table III. Since a(H™)=1 gives an effective
two-body potential which is reasonable, the proper
migration energy from the present calculations is 0.65
eV. This value is slightly lower than the one we ob-
tained using an empirical potential mentioned in the
Introduction.

IV. DISCUSSION

The high-temperature experimental value' for the
activation energy for diffusion of the He gas in LiH is
1.22 eV, whereas our computed value, based on «(H™)
equal to 1, for the migration energy of an interstitial He
atom in LiH is 0.650 eV. Our method of calculations is
based on the harmonic approximation and requires the
knowledge of the dynamical matrix of the perfect
crystal and defect-host-ion interaction potentials. Since
the dynamical matrix is based on the phonon dispersion
curves in the symmetry directions, it should be quite
good. On the basis of the discussion in Sec. IT we also
believe that the defect-host-ion interaction potentials
are reasonable when He-H~ interaction is based on
a(H™) equal to 1. From Tables I and II we note that the
displacements of the negative ions near the defect are
quite large, especially when the defect is in the face-
centered position. Thus the harmonic approximation
may not be very realistic for the negative ions near the

Taste II. Displacements of the neighbors? due to a face-centered interstitial He atom in LiH for two values of «(H™).

Displacements
(&)
U, Us

a(H)= 1 11/16 1 11/16 1 11/16

Positive ions (—1, 1, 0) —0.0913 —0.0974 0.0913 0.0974 0 0
.1, 0.0787 0.0823 0.0787 0.0823 0.0963 0.106

(3,1,0) 0.0270 0.0368 0.0519 0.0538 0 0

Negative ions (1,1,0) 0.248 0.272 0.248 0.272 0 0
1, -1,2) 0.119 0.132 —0.119 —0.132 0.237 0.263

3,-1,0 0.160 0.178 —0.0813 —0.0900 0 0

a The position coordinates of the neighbors are in units of half the nearest-neighbor distance in the crystal.

17 B, Holt (private communication).
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TasrLE III. Formation and migration energies of an interstitial
He atom in LiH for two values of a(H™).

Formation energy (eV) Migration
Body-centered Face-centered energy
a(H) position position (eV)
1 2.077 2,727 0.650
11/16 3.351 3.835 0.484

defect. Because of the larger displacements, the error due
to this approximation is greater when the defect is in
the face-centered position than when it is in the body-
centered position. Since the harmonic approximation
usually underestimates the displacements, the lowering
of the formation energy due to more realistic calcula-
tions should be more in the face-centered position than
in the body-centered position. This would give a lower
value for the migration energy as compared with the one
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obtained here. Thus the difference between the experi-
mental result mentioned above and our calculated value
seems to be real. This may be due to the trapping of a
significant fraction of the He gas in intrinsic defects such
as vacancies, divacancies, etc., which would lead to a
higher value for the activation energy of diffusion. This
appears to be the case for the migration of some of the
rare gases in several alkali halides as shown by Norgett
and Lidiard.!’® We are currently exploring this as well as
the anharmonicity aspect of the present problem.
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The effect of an applied electric field on the emission spectrum of the F center has been measured in the
range 5-50 kV/cm and 2-150°K for six alkali halides (KCl, KF, RbCl, NaCl, NaF, and CsF). The changes
induced by the field are quadratic in the field strength and isotropic with respect to the crystalline axes, and
at T530°K are as follows: an enhancement of the emission polarized parallel to the field direction with a
compensating decrease of the emission polarized perpendicular to the field, a red-shift of the band in both
polarizations, and a broadening in certain cases. At higher temperatures the polarization and broadening
diminish. The effects in CsF are anomalously small. In several crystals, field-induced quenching of the emis-
sion due to Schottky or field ionization also appears. These results are analyzed in terms of Stark mixing in
the relaxed excited state of the F center. The model assumes that the relaxed states consist of nearly de-
generate 2p- and 2s-like states which are strongly mixed by crystal-field fluxtuations on the order of 200
kV/cm. For KCl, the resulting 2s’ mixed state is lower in energy by 0.017 eV and has approximately 409,
admixture of the 2 states. This mixed-state model is able to give a semiquantitative explanation for the
Stark effects observed, as well as a consistent explanation for the magnitude and temperature dependence
of F-center radiative lifetimes and other excited-state phenomena.

I. INTRODUCTION

NTIL recently, the usefulness of the Stark effect

in identifying optical transitions has been limited

to narrow line spectra for which the electric field per-
turbation is larger than the linewidth. However, with
the introduction of modulation and phase-sensitive
detection techniques for measuring small changes in
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line shapes it has become possible to use the Stark
effect to investigate broad-band optical transitions,
such as those of the F center in alkali halides.

The F center, an electron trapped at a negative-ion
vacancy, has been the object of many experimental and
theoretical studies and most of its important features
are by now well established.! It is known that optical
absorption occurs from a 1s-like (I';*) ground state to
a 2p-like (') excited state. Recent Stark-effect ex-
periments of Chiarotti ef al.2 in F-center absorption

1See W. B. Fowler [in Physics of Color Centers, edited by W, B.
Fowler (Academic, New York, 1968), p. 97] for a recent review
of this subject.

2 G. Chiarotti, U. Grassano, and R. Rosei, Phys. Rev. Letters
17, 1043 (1966) ; G. Chiarotti, U. M. Grassano, G. Margaritondo,
and R. Rosei, International Symposium on Color Centers in
Alkali Halides, Rome, 1968, Abstract No. 42 (unpublished).



